.. _network_tutorial1: Tutorial for the NetworkX backend ================================= * :ref:`nx_tutorial_part1` * :ref:`nx_graph_objects` * :ref:`nx_graph_patterns` * :ref:`nx_rewriting_graphs` * :ref:`nx_tutorial_part2` * :ref:`nx_create_hierarchy` * :ref:`nx_rewrite_hierarchy` * :ref:`nx_strict_hierarchy` * :ref:`nx_propagation_hierarchy` * :ref:`nx_serialize_hierarchy` .. _nx_tutorial_part1: ============================================== Part 1: Rewriting simple graph with attributes ============================================== Let us start by importing the necessary data structures and functions: :: from regraph import NXGraph, Rule from regraph import plot_graph, plot_instance, plot_rule .. _nx_graph_objects: ------------------------------------- Creating and modifying a graph object ------------------------------------- ReGraph implements a wrapper around NetworkX's directed graph objects (`nx.DiGraph`) through the `NXGraph` class. The following snippet illustrates how a directed graph object can be created: :: # Create an empty graph object graph = NXGraph() # Add a list of nodes, optionally with attributes graph.add_nodes_from( [ 'Alice', ('Bob', {'age': 15, 'gender': 'male'}), ('Jane', {'age': 40, 'gender': 'female'}), ('Eric', {'age': 55, 'gender': 'male'}) ]) # Add a list of edges, optionally with attributes graph.add_edges_from([ ("Alice", "Bob"), ("Jane", "Bob", {"type": "parent", "since": 1993}), ("Eric", "Jane", {"type": "friend", "since": 1985}), ("Eric", "Alice", {"type": "parent", "since": 1992}), ]) We can print the list of nodes and edges of the created graph objects with data attached to them: :: print("List of nodes: ") for n, attrs in graph.nodes(data=True): print("\t", n, attrs) print("List of edges: ") for s, t, attrs in graph.edges(data=True): print("\t{}->{}".format(s, t), attrs) We can add individual nodes and edges as follows: :: graph.add_node('Sandra', {'age': 45, 'gender': 'female'}) graph.add_edge("Sandra", "Eric", {"type": "spouse", "since": 1990}) graph.add_edge("Eric", "Sandra", {"type": "spouse", "since": 1990}) graph.add_edge("Sandra", "Alice", {"type": "parent", "since": 1992}) We can also add and access node and edge attributes: :: graph.add_node_attrs("Alice", {"age": 18, "gender": "female"}) graph.add_edge_attrs("Alice", "Bob", {"type": "friend", "since": 2004}) # Get attributes of nodes and edges print("New Alice attibutes: ", graph.get_node("Alice")) print("New Alice->Bob attributes: ", graph.get_edge("Alice", "Bob")) Note that the attributes of the nodes/edges are converted to `regraph.attribute_sets.FiniteSet` objects. See the tutorial on advanced attribute values (see :ref:`advanced_attributes`) for more details on the underlying data structures. >>> for k, v in graph.get_node("Alice").items(): >>> print(k, ": ", v, ", type: ", type(v)) age : {18} , type: <class 'regraph.attribute_sets.FiniteSet'> gender : {'female'} , type: <class 'regraph.attribute_sets.FiniteSet'> ReGraph provides some utils for plotting NetworkX-based graphs >>> positioning = plot_graph(graph) .. image:: _static/graph1.png Graph objects can me dumped to dictionaries following the JSON format (note how the attribute values are encoded). >>> graph.to_json() {'edges': [{'from': 'Alice', 'to': 'Bob', 'attrs': {'type': {'type': 'FiniteSet', 'data': ['friend']}, 'since': {'type': 'FiniteSet', 'data': [2004]}}}, {'from': 'Jane', 'to': 'Bob', 'attrs': {'type': {'type': 'FiniteSet', 'data': ['parent']}, 'since': {'type': 'FiniteSet', 'data': [1993]}}}, {'from': 'Eric', 'to': 'Jane', 'attrs': {'type': {'type': 'FiniteSet', 'data': ['friend']}, 'since': {'type': 'FiniteSet', 'data': [1985]}}}, {'from': 'Eric', 'to': 'Alice', 'attrs': {'type': {'type': 'FiniteSet', 'data': ['parent']}, 'since': {'type': 'FiniteSet', 'data': [1992]}}}, {'from': 'Eric', 'to': 'Sandra', 'attrs': {'type': {'type': 'FiniteSet', 'data': ['spouse']}, 'since': {'type': 'FiniteSet', 'data': [1990]}}}, {'from': 'Sandra', 'to': 'Eric', 'attrs': {'type': {'type': 'FiniteSet', 'data': ['spouse']}, 'since': {'type': 'FiniteSet', 'data': [1990]}}}, {'from': 'Sandra', 'to': 'Alice', 'attrs': {'type': {'type': 'FiniteSet', 'data': ['parent']}, 'since': {'type': 'FiniteSet', 'data': [1992]}}}], 'nodes': [{'id': 'Alice', 'attrs': {'age': {'type': 'FiniteSet', 'data': [18]}, 'gender': {'type': 'FiniteSet', 'data': ['female']}}}, {'id': 'Bob', 'attrs': {'age': {'type': 'FiniteSet', 'data': [15]}, 'gender': {'type': 'FiniteSet', 'data': ['male']}}}, {'id': 'Jane', 'attrs': {'age': {'type': 'FiniteSet', 'data': [40]}, 'gender': {'type': 'FiniteSet', 'data': ['female']}}}, {'id': 'Eric', 'attrs': {'age': {'type': 'FiniteSet', 'data': [55]}, 'gender': {'type': 'FiniteSet', 'data': ['male']}}}, {'id': 'Sandra', 'attrs': {'age': {'type': 'FiniteSet', 'data': [45]}, 'gender': {'type': 'FiniteSet', 'data': ['female']}}}]} .. _nx_graph_patterns: ---------------------- Finding graph patterns ---------------------- Let us first initialize a pattern graph: :: pattern = NXGraph() pattern.add_nodes_from(["x", "y", "z"]) pattern.add_edges_from([ ("x", "y"), ("z", "y") ]) Matches of the pattern in the previously created graph can be found as follows: >>> instances = graph.find_matching(pattern) >>> print(instances) [{'x': 'Sandra', 'y': 'Alice', 'z': 'Eric'}, {'z': 'Sandra', 'y': 'Alice', 'x': 'Eric'}, {'x': 'Alice', 'y': 'Bob', 'z': 'Jane'}, {'z': 'Alice', 'y': 'Bob', 'x': 'Jane'}] We can equip pattern nodes and edges with attributes, then ReGraph will look for all subgraphs matching to the structure of the pattern and whose elements contain respective attributes. >>> pattern.add_edge_attrs("x", "y", {"type": "parent"}) >>> pattern.add_edge_attrs("z", "y", {"type": "parent"}) >>> instances = graph.find_matching(pattern) >>> print(instances) [{'x': 'Sandra', 'y': 'Alice', 'z': 'Eric'}, {'z': 'Sandra', 'y': 'Alice', 'x': 'Eric'}] We can plot matchings inside the graph using `plot_instance`. >>> print(instances[0]) >>> plot_instance(graph, pattern, instances[0], parent_pos=positioning) .. image:: _static/graph2.png .. _nx_rewriting_graphs: ----------------------- Rewriting graph objects ----------------------- ReGraph implements the rewriting technique called Sesqui-pushout rewriting that allows to transform graphs by applying rules through their instances (matchings). It allows to express the following graph transformations: - node cloning, - node/edge removal, - node/edge attributes removal, - node merging, - node/edge addition, - node/edge attribute addition. A rewriting rule is a span `LHS` <- P -> RHS`, where `LHS` is a graph that represents a left-hand side of the rule, a pattern that is going to be matched inside of the input graph, `P` is a graph that represents the interfaces of the rule, together with a homomorphism `LHS <- P` it specifies nodes and edges that are going to be preserved in the course of application of the rule. `RHS` and a homomorphism `P -> RHS`, on the other hand, specify nodes and edges that are going to be added. In addition, if two nodes in `P` map to the same node in `LHS`, this node is going to be cloned during graph rewriting. Symmetrically, if two nodes in `P` match to the same node in `RHS`, these nodes are merged. To rewrite the graph, we first create a rewriting rule (see :ref:`rules_tutorial` for more examples of rules and means for their creation provided by ReGraph). A data structure for rewriting rules is implemeted in the class `regraph.rules.Rule`. Here, we will use the created pattern to initialize a rule. ReGraph implements the util `plot_rule` ror rule visualization. Let us create a rule: :: rule = Rule.from_transform(pattern) rule.inject_add_edge("y", "x", {"type": "child_of"}) rule.inject_add_edge("y", "z", {"type": "child_of"}) plot_rule(rule) .. image:: _static/rule_1.png Graph rewriting can be performed with the `rewrite` method of `NXGraph`. It takes as input a rule and an instance of this rule. Rewriting is performed in-place, the provided graph object is modified and a dictionary corresponding to the `RHS` matching in the rewritten graph is returned. Let us first back-up the original graph and, then, rewrite it using the first instance we found: >>> graph_backup = NXGraph.copy(graph) >>> rhs_graph = graph.rewrite(rule, instances[0]) First, we plot the selected pattern instance in the backed-up graph: >>> plot_instance(graph_backup, rule.lhs, instances[0], parent_pos=positioning) .. image:: _static/instance_1.png Then, we plot the RHS instance in the transformed graph: >>> new_pos = plot_instance(graph, rule.rhs, rhs_graph, parent_pos=positioning) .. image:: _static/instance_2.png Let us consider another example of a rewriting rule: :: pattern = NXGraph() pattern.add_nodes_from(["x", "y"]) pattern.add_edge("x", "y", {"type": "parent"}) # Initialize a rule that clones `x`, note that tha variable `rhs_clone_id` # corresponds to the ID of the newly produced clone in the RHS of the rule rule = Rule.from_transform(pattern) _, rhs_clone_id = rule.inject_clone_node("x") rule.inject_add_edge("x", rhs_clone_id, {"type": "spouse"}) rule.inject_add_edge(rhs_clone_id, "x", {"type": "spouse"}) >>> plot_rule(rule) .. image:: _static/rule_2.png Let us fix an instace of the rule: >>> instance = {'x': 'Jane', 'y': 'Bob'} >>> new_pos = plot_instance(graph, rule.lhs, instance, parent_pos=new_pos) .. image:: _static/instance_21.png >>> rhs_graph = graph.rewrite(rule, instance) >>> new_pos = plot_instance(graph, rule.rhs, rhs_graph, parent_pos=new_pos) .. image:: _static/instance_22.png ---- Next ---- Continue to :ref:`nx_tutorial_part2` to learn about graph hierarchies and their rewriting. -------- See more -------- Module reference: :ref:`nxgraphs`